Search results for "QCD in nuclear reactions"

showing 7 items of 7 documents

Open-source QCD analysis of nuclear parton distribution functions at NLO and NNLO

2019

We present new sets of nuclear parton distribution functions (nPDFs) at next-to-leading order (NLO) and next-to-next-to-leading order (NNLO). Our analyses are based on deeply inelastic scattering data with charged-lepton and neutrino beams on nuclear targets. In addition, a set of proton baseline PDFs is fitted within the same framework with the same theoretical assumptions. The results of this global QCD analysis are compared to existing nPDF sets and to the fitted cross sections. Also, the uncertainties resulting from the limited constraining power of the included experimental data are presented. The published work is based on an open-source tool, xFitter, which has been modified to be ap…

particle interactionsParticle physicsHEAVY FLAVOR PRODUCTIONProtonPREDICTIONSFOS: Physical sciencesPartonhiukkasfysiikkaInelastic scatteringPROTON114 Physical sciences01 natural sciencesUNCERTAINTIESnucleus-neutrino interactionsCROSS-SECTIONSSet (abstract data type)High Energy Physics - Phenomenology (hep-ph)DEPENDENCEquantum chromodynamics0103 physical sciencesnonperturbative effects in field theory010306 general physicsNuclear Experimentquantum field theoryperturbation theoryDEEP-INELASTIC-SCATTERINGQuantum chromodynamicsPhysics010308 nuclear & particles physics3-LOOP SPLITTING FUNCTIONSnucleon distributionSTRUCTURE-FUNCTION RATIOSDeep inelastic scatteringEVOLUTIONHigh Energy Physics - PhenomenologyDistribution functionQCD in nuclear reactionsnuclear matterHigh Energy Physics::ExperimentNeutrinoydinfysiikka
researchProduct

Color glass condensate at next-to-leading order meets HERA data

2020

We perform the first dipole picture fit to HERA inclusive cross section data using the full next-to-leading order (NLO) impact factor combined with an improved Balitsky-Kovchegov evolution including the dominant effects beyond leading logarithmic accuracy at low $x$. We find that three different formulations of the evolution equation that have been proposed in the recent literature result in a very similar description of HERA data, and robust predictions for future deep inelastic scattering experiments. We find evidence pointing towards a significant nonperturbative contribution to the structure function for light quarks, which stresses the need to extend the NLO impact factor calculation t…

QuarkParticle physicsLogarithmNuclear TheoryFOS: Physical scienceshiukkasfysiikka01 natural sciences114 Physical sciencesperturbative QCDColor-glass condensateNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)0103 physical sciences010306 general physicsPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyOrder (ring theory)HERADeep inelastic scatteringDipoleHigh Energy Physics - PhenomenologyQCD in nuclear reactionsEvolution equationHigh Energy Physics::Experimentydinfysiikka
researchProduct

Relativistic corrections to the vector meson light front wave function

2020

We compute a light front wave function for heavy vector mesons based on long distance matrix elements constrained by decay width analyses in the Non Relativistic QCD framework. Our approach provides a systematic expansion of the wave function in quark velocity. The first relativistic correction included in our calculation is found to be significant, and crucial for a good description of the HERA exclusive $\mathrm{J}/\psi$ production data. When looking at cross section ratios between nuclear and proton targets, the wave function dependence does not cancel out exactly. In particular the fully non-relativistic limit is found not to be a reliable approximation even in this ratio. The important…

Quarkelectron-ion collisionsMesonNuclear TheoryNuclear TheoryFOS: Physical scienceshiukkasfysiikka01 natural sciences114 Physical sciencesNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)deep inelastic scatteringquantum chromodynamics0103 physical sciencesVector meson010306 general physicsWave functionQuantum chromodynamicsPhysics010308 nuclear & particles physicsHERAFunction (mathematics)Rest frameHigh Energy Physics - Phenomenologynonrelativistic QCDQCD in nuclear reactionsQuantum electrodynamicsHigh Energy Physics::Experiment
researchProduct

Deep inelastic scattering in the dipole picture at next-to-leading order

2017

We study quantitatively the importance of the recently derived NLO corrections to the DIS structure functions at small x in the dipole formalism. We show that these corrections can be significant and depend on the factorization scheme used to resum large logarithms of energy into renormalization group evolution with the BK equation. This feature is similar to what has recently been observed for single inclusive forward hadron production. Using a factorization scheme consistent with the one recently proposed for the single inclusive cross section, we show that it is possible to obtain meaningful results for the DIS cross sections.

Particle physicsNuclear TheoryHadronFOS: Physical sciencesInelastic scattering01 natural sciences114 Physical sciencesInelastic neutron scatteringNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)Factorizationnuclear physics0103 physical sciencesPerturbative QCD010306 general physicsPhysicsQuasielastic scatteringta114010308 nuclear & particles physicsRenormalization groupDeep inelastic scatteringEVOLUTIONDipoleHigh Energy Physics - PhenomenologyQCD in nuclear reactionsHigh Energy Physics::ExperimentydinfysiikkaPhysical Review D
researchProduct

Isolated photon production in proton-nucleus collisions at forward rapidity

2018

We calculate isolated photon production at forward rapidities in proton-nucleus collisions in the Color Glass Condensate framework. Our calculation uses dipole cross sections solved from the running coupling Balitsky-Kovchegov equation with an initial condition fit to deep inelastic scattering data. For comparison, we also update the results for the nuclear modification factor for pion production in the same kinematics. We present predictions for future forward RHIC and LHC measurements at $\sqrt{s_{NN}}=200$ GeV and $\sqrt{s_{NN}}=8$ TeV.

PhotonNuclear TheoryProton7. Clean energy01 natural sciencesColor-glass condensateHigh Energy Physics - Phenomenology (hep-ph)coupling constant: energy dependenceDEPENDENCEPIONNuclear Experiment[ PHYS.NUCL ] Physics [physics]/Nuclear Theory [nucl-th]Brookhaven RHIC CollPhysicsphoton lepton and quark productionLarge Hadron ColliderD+AU COLLISIONSphotonBalitsky-Kovchegov equationP-PB COLLISIONSHigh Energy Physics - PhenomenologyCERN LHC Colllepton and quark productionLHCphoton: forward production[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]FOS: Physical sciencespi: hadroproduction114 Physical sciencesNuclear Theory (nucl-th)Nuclear physicsPiondeep inelastic scatteringquantum chromodynamics0103 physical sciencesRapidity010306 general physicsp nucleus: scatteringta114010308 nuclear & particles physicsCOLOR GLASS CONDENSATEDeep inelastic scatteringHADRON-PRODUCTIONboundary conditionDipolerapidityQCD in nuclear reactions[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]TEV[ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]cross section: dipole
researchProduct

Nucleon dissociation and incoherent J/ψ photoproduction on nuclei in ion ultraperipheral collisions at the CERN Large Hadron Collider

2019

Using the general notion of cross section fluctuations in hadron-nucleus scattering at high energies, we derive an expression for the cross section of incoherent J / ψ photoproduction on heavy nuclei d σ γ A → J / ψ Y / d t , which includes both elastic d σ γ p → J / ψ p / d t and proton-dissociation d σ γ p → J / ψ Y / d t photoproduction on target nucleons. We find that, with good accuracy, d σ γ A → J / ψ Y / d t can be expressed as a product of the sum of the d σ γ p → J / ψ p / d t and d σ γ p → J / ψ Y / d t cross sections, which have been measured at HERA, and the common nuclear shadowing factor, which is calculated using the leading twist nuclear shadowing model. Our prediction for …

photonuclear reactionsphoton lepton and quark productionQCD in nuclear reactionshiukkasfysiikkaydinfysiikkarelativistic heavy-ion collisions
researchProduct

Multigluon Correlations and Evidence of Saturation from Dijet Measurements at an Electron-Ion Collider.

2020

We study inclusive and diffractive dijet production in electron-proton and electron-nucleus collisions within the Color Glass Condensate effective field theory. We compute dijet cross sections differentially in both mean dijet transverse momentum $\mathbf{P}$ and recoil momentum $\mathbf{\Delta}$, as well as the anisotropy in the relative angle between $\mathbf{P}$ and $\mathbf{\Delta}$. We use the nonlinear Gaussian approximation to compute multiparticle correlators for general small $x$ kinematics, employing running coupling Balitsky-Kovchegov evolution to determine the dipole amplitude at small $x$. Our results cover a much larger kinematic range than accessible in previous computations …

Particle physicselectron-ion collisionsNuclear TheoryGeneral Physics and AstronomyFOS: Physical scienceshiukkasfysiikka114 Physical sciences01 natural sciencesColor-glass condensateMomentumNuclear Theory (nucl-th)RecoilHigh Energy Physics - Phenomenology (hep-ph)deep inelastic scattering0103 physical sciencesEffective field theorySaturation (graph theory)sironta010306 general physicsPhysicsQuark & gluon jetsHigh Energy Physics::Phenomenology3. Good healthGluonHigh Energy Physics - PhenomenologyCover (topology)QCD in nuclear reactionsHigh Energy Physics::ExperimentProduction (computer science)Physical review letters
researchProduct